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B. G. GALERKIN'S METHOD IN CALCULUS OF VARIATIONS AND IN
THE THEORY OF ELASTICITY

Ya. I. Perel'manl

ABSTRACT. The author reviews the principles of
Galerkin's method for the solution of problems of
mechanics, and the relation of other approximate methods

(Ritz, Rayleigh, Trefftz, Leybenzon) to this method.
A list of works in which Galerkin's method is employed
is given at the end of the article.

1. A work of B. G. Galerkin entitle "Rods and Plates" (Sterzhni i /345%
plastinik) appeared in "Vestnik inzhenerov," No. 19, 1915. 1In it the author
presented a new method for the solution of many problems of structural mechan-
ics, comparing it to the Ritz method.

We permit ourselves to cite an exposition of the nature of this method
from this work.

"Let there be a rectangular plate freely supported along the edges which
undergoes the load p=f(x,y). Let us set up the equation for the elastic sur-
face:

@ w

=3V frx i T

ﬁ lA,”sm sin == - (v)
nz=

The element of the coordinates is taken at one of the points, and the
axes of the coordinate are directed along the sides of the rectangle.

Equation (b) satisfies the conditions at the ends, because w=0 when x=0,

2
y=0, x=a, y=b; then 62W/5x2=0 when x=0 and x=a, as equally ng/ay =0 when y=0
and y=b.

Substituting the expression w into the differential equation of the elastic
surface on the bent plate

m? Eh3 otw e Hw .
Ti(""z'—l) (W+2dx'¢()y? dy") /(x y)r ( )

we obtain
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In the general case, w obviously does not satisfy equation (c) and can be
only an approximate solution of the problem. To determine the coefficients of
A, we multiply both halves of equation (4) by sin(kmx/a)sin(nmy/b)dxdy and

integrate from O to a and from O to b. Then we obtain:

mERSTS . ab (kX \
-12—(’—’.?1-).4?,—4- F_"b") _[ f(x, y)sin ———sm dxdy— T,,,.\ (e)
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whence
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Examining equation (b), we note that /346
[« ] [« ] @™ [+ o]
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where
kmx Ty
w,, = A,, sm——sm

5 1.

i.e., the elastic surface w consists of many elastic surfaces, as if super-
imposed.

In this case the right side of equality (e)
| N kx = \\
To= H/(X. y) sin —aisinf-,"ldxdy \

is the action of external transverse forces when the plate bends along the
elastic surface W when Akn=l." And further:

"Generalizing this technique, we may arrive at the following.

Let us propose a warped form of the plates

W—ZA ?n(x) .‘I) \ (l)

e ——— e

such that each term 9, satisfies the conditions along the edges; then let us

substitute the value of w into the equation

m2ERY  [Mw 0w Hw v
=T (o 2o ) =/ (6 4 )., (2)
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Then we obtain:
m? Eh3 A s, o, Mo
12(mz—1) 4\—1 A" ( oxt +2;)x~2()y'—2+ ”)_"' (xo y)

Now, multiplying both halves of the equality by mkdxdy and integrating

over all the area of the plate, we obtain n equations of the form:

m? Eh3 09y g P9 0‘%.
12(m2—1)_.’4 ”( e  25aaat )Q*dxdy_”q'(x y)'?‘dxdy\ (3)
This method may be applied both in problems of elastic oscillations and
in problems of the statics of rods and plates."

Thus, as in the Ritz method, expressing the displacement by several "co-
ordinate" functions:

w= z A5, (x, y)

such that each function @n(x,y) singly satisfies the limiting conditioms,

academician Galerkin, contrary to Ritz, does not use the potential energy, but
equates to zero the force of all external and internal forces on each of the
selected virtual displacements for which the variationsof 6An¢n are used (the

coefficients of An may be considered generalized coordinates).

The idea of an approximate application of the element of virtual displace-
ments to the problem of mechanics appeared exceptionally fruitful. ZBMT

The possibility of the application by analogy of the method to problems
of variation calculus, mathematical physics and to any functional equation in the
hands of the investigator appeared to be a powerful weapon whose value is dif-
ficult to overestimate.

In the words of the Englishman Duncan (ref. 11), "it is hardly possible to
encounter a problem in mechanics concerning elastic or other deformed bodies to
which the Galerkin method might not be successfully applied."”

This assertion may as well be extended to problems concerning invariant
systems (ref. 9).

Above we noted the difference of the principles on which the Ritz and the
Galerkin methods are based. The Ritz method is inapplicable to nonconservative
systems, while the Galerkin method, directly applicable to the differential

1

The work cited contains many fine examples of the application of this method
both to problems of the statics of rods and plates and to the problem of their
stability, where the author uses algebraic series as well as trigonometric series.
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equation, retains its force. When both methods are applied equivalent results
are obtained, such that in this last case the Galerkin method has the advantage
of greater simplicity, free from the necessity of obtaining the expression of
the functional. (Having specifically this case in mind, Hencky (ref. 2) speaks
of "the equally elegant and practically applicable variety of the Ritz method.")

2. Let us examine the problem of the minimum of the integral:

J::.LH.FTL y,z,u,u;,u;,u:)dx,dydzﬂ& (1)

v

where V is the volume limited by the surface X, and u is the sought function of
the variables x,y,z. Let the values u be given to portions of the surface
Zl. Let us suppose that F has continuous partial derivatives to the third order

inclusive, and that ué,u&,u; are continuous. The variation of integral (1)is

¥

!

M= [ [ {E 8u~+ ;ﬁ S, + L S, -+ d{;su,'} dxdydz .

Transforming the last three terms in the right side according to the Gauss
formula, we find:

5 = JJ[ Edudxdydz+ .

P}

e ra j : e d n (2)
-+ | J {Bif’ cos(nx) + a%f cos (ny),r-o-vait? ¢os (r‘zz)}bu ds T=Z -+ };,,)\
e z v : /] 2

Here E designates the left side of the corresponding Euler equation:

E_ar__a(or) B(OF) a(or);\ - (3)

=ou T 9x\ouy) T oy \ou,] T 0z \Gu,
The required conditions of the minimum are:
¥=0. (L)

Let us now suppose that the approximate solution of the variational prob-
lem can be presented in the form:

u(xr L z)=uo(x' Y z)+ 2 C.~9.-(x, Y z)v\\‘\'v (5)

where uo(x,y,z) on the surface satisfies the same conditions as does the sought /348

function w(x,y,z), and cs designates the undetermined coefficients, while the




"coordinate" functions ¢, satisfy the condition

9.=0 by I (i=1,2...,0. (6)
as well as the conditions of differentiability and linear independence.

Then

Mu Z% Q(x,y.z) A (7)

Substituting expression (7) into equation (L), we obtain:
o
\ d¢, 1 ”J Eo,dxdydz<+ '
l B (8)
ﬁ [” ,cos(nx)+ COS(nJ) + oF cos(nz)] 9 do}.—.o \

In view of the arbitrariness of the variation 6c we arrive at the sys-
tem of n eqguations:

J’.” E'?,: dx d‘; dz _'_
v

/] 0 F
~- ].j [(,'U—P, cos (nx) -+ o—uf,— cos (ny) + J'J— cos (nz):l n,do=0 (i=1,2,...,n),
x 1 2 . g

L7

Thus, the requirement that the integrals of (9) vanish is essential not
for any variation 6u, but for n selected in a definite way and having the form
6ci@i. In the case of problems of mechanics we arrive at the need that the

effect of all the forces vanish in a definite way for the choices n of the
virtual displacements.

- From the n equations (9) obtained which are linear in the majority of cases
in mechanics, generally speaking it is possible to determine the unknown
coefficients ci(i=l, 2y ...y ).

We shall designate the equation of the form (9) the Galerkin variational
equation.

The Galerkin equation for any variational problem may be written in ex-
actly the same way.

We note in particular that if expression (5) satisfies the limiting con-
ditions for the whole surface Z, the Galerkin equations have the form:



. IJJ. E‘?.dx‘I.{/,dZ=0 (i=1, 2,...,n).\ (99)

However, if the approximate solution of the problem is selected such that
expression (5) is an integral of the Euler equation E=0 but does not satisfy
the surface conditions, we arrive at the system of equations:

y oF oF .
_H [ai:-;—.cos(nx)-kmcos(ny)-*-zjcos(nl)]?«d"zo (i=1,12,... .n),\,\ (9")
} 8 ’ ;
which constitutes the contents of the Leybenzon method (ref. 17) and of the [ﬁhg

equivalent Trefftz methodl, as will be obvious from the following.

3. If the variational problem is solved by the Ritz method and by the
Galerkin method, identical results will be obtained if one and the same system
of "coordinate" functions is selected.

Let us use the Ritz method to seek the integral minimum:

.I::JJ[F(vavzvu’ "x'"' ')dxdyrf 2'\ (l)

Let us sét

u(x, U 3)= u, (x, Y 2) -+ ‘_\_“ C, Py (x, Y 3) o\ (2)

=1

where U and the coordinate functions p, are determined as above.

Let the Ritz equations be

Jde_O (=1, 2,...,n). (3)

(ch

However, L . . -

\

—fr JaF . aF i} oF , oF ,) \\k\
’)ck “. f Fd‘l' J.J J. (77—; ?" + ﬁu; ’?"‘ +0u,,' ’P"Il +m QL': dT LI
v L

o

Transforming the last three terms according to the Gauss formula, we
have

j' ((/F oep‘ F 95y ifﬁ_)d o 5
’ u Ou,/ 9y ' du, Oz = R

1
Trefftz. Mathematical theory of elasticity (Matematicheskaya teoriya uprugosti).
Pages 162-163,

6



= J.J‘ [,;u 7 cqu(nx)—i-d 7 COS (ny)+ El (nz)] 9, ds —

G o 2.

|
Thus,

llck .” Fdr= “ L ~x (ou,) 0: ((;—)u’—:;_) i (ou, )] Py v+,

!
\
—_ IF
-+ U‘ [0"’. cos (nx) + im,’, cosv(ny) + Gy €08 (nz):] ¢, ds=0, \,\

i.e., we have arrived at the Galerkin variation equation (9) of the previous

.1
section™.

The proven statement (obviously suitable for any variational problem)
permits all the results obtained for the Ritz method, concerning the proofs
of the existence of a solution and convergence in particular to be almost
automatically transferred to the Galerkin method.

Along with this, since the Galerkin method appears to be more practically
applicable than the Ritz method, by significantly simplifying the calculations
it may completely replace this latter and in all those problems where possible,
particularly in problems of mechanics, the application of both methods. /350

4, The Galerkin equations for the approximate solution of the spatial
problem of the theory of elasticity can be obtained both by direct application
of the element of virtual displacements, and in view of the existence of an
elastic potential from the principle of minimum potential energy.

In the case of the functional of the forn?
J(cl’ ‘,' W)=J_[fp(x'yl z, Uv Uz” Uq" l” Vv Vz,l°" ’ ‘V’ z!" )dxdydz_'-‘
14
~ ([ (v, U, V, W)ds, (1)
I, -

where U, V, W are the sought functions, while u and v are parameters determining
the position of the points on the surface, having set

\

U=Uo+§ a;9,, V=V0"'§]vb-%’ W_-W-O-ZCX,,‘ (2)

. =1

Incidently. the equivalence of the methods of Leybenzon and Trefftz also
follows from this.

2 Compare Smirnov, Krylov, Kantorovich. Variational Calculus (Variatsionnoye
ischisleniye) pp. 88-89. 7



where U

the coordinate functions ¢.,{.,x. vanish for ., each singly (Z=X.+%T
(Pl 1°7™M 1 1

to the preceding, it is easy to obtain the Galerkin variational equation.

They have the form (i=1, 2, ..., n):
HJ{ 7 (07) = liwg) = (v} s+

-+ ” {dU,' cos (nx) + ‘;J cos (ny) + U 77 COS (nz)-—i—g‘;}'}q} ds=0; ‘\\

L '

“q

two more 2n equations for V and W have a similar form.

The full potential energy of the elastic body (expressed in displacments)
is a functional of the form (1). Applying to it the Galerkin variational equa-
tions (3), we proceed to the system of 3n linear equations for the approximate

solution of spatial problems in the theory of elasticityl.

The same result can be obtained by direct application of the element of

O,V WO take the values given for U,V,W on part of the surface 21’ while

(3)

virtual displacements, similar to the way in which the author obtained the

equation for plates. Using the eqguations of equilibrium in displacements:

(1+P-)g—?,+P-V2U+PX_0 ()\-|—u)o +yvzv+pY 0
(A—!—U)) +yV“w+pZ‘-0

The surface conditions

F,,= 0+ 2pe,,) cos(nx) + | pe,, cos (ny) 7 ve,, cos(nz), i
F,,= pe,, cos (nx) (20 -+2ue ) cos (ny) -+ pe,, cos(nz), E
F,,= pe,, €os (nx) -+ ,cos(ny) + (7\0 -+ Qy.e,,) cos (nz) |

Let us decompose the displacements by the coordinate functions:

u=u,(x, vy.vz)*- }: a, 7. (x, ¥ 2), \
=1

|

v=1,(x, y, z)-&— \ b, 4‘ (x, y, 2), \
'¢~1 _ |

3 w:wo(xr Y z)+Z cq'x.'(x’ Y z)) |
o e \

1

They were similarly obtained by Professor A. I. Lur'ye in his book (ref. 8).

8

(%)

(5)

(6)

similarly

/351



for which u.,v.,w, correspond with the given values of the displacements on

o070
the part of the surface Zl where the displacements are given, while all func-

tions cpi,q;i,xi in this part of the surface vanish and in the remaining part

are arbitrary, satisfying only the conditions of differentiability and linear
independence.

We select the virtual displacements in the form:

vuln g e, G g 23, (6 g 2D, (7

where 6ai,6bi,6ci are variations of the undetermined coefficients in expression

(6).

Let us calculate the action of the mass and surface forces on the selected
virtual displacements. From the first equation (k4)

Multiplying by the i-th virtual displacement cp.(x, v, 2, )8a, and integrating
. . i i
with respect to volume V, we obtain:

j}“j PX?- (X, Yy, Z)Bai dXdy dz— \ (8)

—— ”J' [()\—o—y,)%%—o—y.v2 u] 9 (x, y, z)da; dxdydz.\
14

Multiplying both parts of the first of equations (5) by the i-th virtual
displacement parallel to the x axis and integrating over the surface, we
obtain: v

J‘J. F"-' Ps (X, Y z) 3a,- de ==
I ?

= J.I [(26 + 2y.eu) cos (nx) + y.é,v cos (f;y‘).-f pe,, COS (nz)] 9, ‘(x, y, z)da,ds .\\ (9)

g .-

Adding equalities (8) and (9), we arrive at the Galerkin equation

J.‘..f [(1—0— p)%+(¢Vzu+pX] p, dv = Y
‘ | (10)

3\
\

A

= J.J [(M + 2ve,,) cos (nx) +pe,, cos (ny) -+ pe,, cos(nz)] 9, ds. \‘ \
I

The remaining equations may be written comparably. Summing up in



the left part the forces of inertia, we obtain the equation of motion of the
elastic body.

The stated reasoning can obviously be carried to the case of any orthogonal
coordinate system. /352

5. The majority of authors feel that the essential difference between
the Galerkin and Ritz methods is that, applying the Ritz method, it is suf-
ficient to satisfy only the geometric limiting conditions, while in applying
the Galerkin method, along with the geometric conditions the dynamic conditions
must also be satisfied (the vanishing of zero forces or moments at the free ends).

Thus, for example, Biezeno and Grammel (ref. 6) cite the conclusion of the
Galerkin equations for the spatial problem in the theory of elasticity and show
the equivalence of the results for both methods if only conditions (5 of the
preceding section are satisfied.

1

In another work Grammel (ref. 7), using the "variational principle," cites

the problem of eigenvalues to the equation:

: p ~
[ )=t 65) = oo e — (05~ o =0\

In the author's opinion, the system of coordinate functions for application
of the Galerkin method must also satisfy all dynamic limiting conditions in re-
lation to which the nonintegral terms vanish.

There is no justification for the stated requirement that the dynamic
limiting conditions be satisfied by coordinate functions when the Galerkin
‘method is applied. This is so, in the first place, as is shown by the fact that
the Galerkin method and the Ritz method are equivalent, as is shown in Section 3.
On the other hand, this is so, as was shown in a preceding issue, due to the
equations of the theory of elasticity by the approximate application of the
element of virtual displacements.

If when solving the problems of mechanics by the Galerkin method we start
from the principle of variation, in which the system of coordinate functions
does satisfy the dynamic conditions, these conditions are satisfied "automatically"
even if we start with the differential equation of equilibrium, then it is
evident that we must take into account the action of the surface forces on that
part of the border where the displacements are not given.

In equation (1), for example, the dynamic border conditions are satisfied
"automatically" when the nonintegral terms present an additional action of the
surface forces.

6. The Galerkin method has found numerous applications in the static
problems in the theory of elasticity.

Here we may point out one modification of the method: the Kantorovich-
10



Galerkin method, which has been shown to be extremely convenient in the solution
of countless classical problems in the theory of elasticity (Saint Venant torsion
and flexure) and in many cases easily reduces to a precise solution. The

Kantorovich methodl is contained-basically in the following. /353

It is well-known that the problem of the torsion of a weightless prismatic
rod cen be reduced to calculation of the variation of the integral (ref. 12):

y

TR (2] — 20} ey -

According to the Kantorovich variational method, the function ¢ will be
sought in the form of the product:

(% 9)=f(x y)9(x),| (2)

where f(x,y) is the arbitrarily chosen function, while @(x,y) is taken on the
boundary with the possible exception of the segments parallel to the y axis, the
given values, and q(x) is an unknown function.

Substituting ¢ into expression (1) according to (2), let us integrate
with respect to y, then let us compose the Euler equation for the determination
of the function ¢x).

In the Galerkin-Kantorovich method they proceed immediately from the dif-
ferential equation for the determination of the torsion function

Pl anb e 9 \ (3)
0x? v o

and the boundary condition @=0.

Presenting & with respect to (2), we select the virtual displacement in
the form:

M =f(x, y)¥ (x).\ (u)

Substituting the chosen function & into equation (3) with respect to (2)
and multiplying both sides of the equation by the virtual displacment 8%,
let us integrate it with respect -to y in the corresponding limits; considering
the arbitrariness of 6y, we arrive at the ordinary second-order differential
equation relative to the function ¢fx).

The Prandtl analogy2 permits us to treat the equation
r—
See in more detail:; Kantorovich and Krylov. Methods for the approximate so-
Jution of partial differential equations (Metody priblizhennogo resheniya
uravneniy v chastnykh proizvodnykh). pp. 248-257.

2.
Timoshenko. Course in the theory of elasticity (kurs teorii uprugosti) 1914

edition, Part 1, p. 160. 11



J‘J v2 'I'S‘l‘ dt = — 2 J;J. 8(]) do \\ (5)

b1
e b

as the condition of wvanishing of the action of all forces applied to the
membrane on the chosen virtual displacement.

We note that if ¢ is presented not in the form (2), but is expanded
with respect to the coordinate functions

A
> (x, y)=>_‘ c.‘?n\ (6)
i=1 \
where all p, are equal to zero on the boundary of the transverse section of the
rod, we arrive at the ordinary Galerkin method.

The Galerkin-Kantorovich method and the solution (with the aid of this
method) for the problem of the torsion of a trihedral prism were expanded for
the first time, as far as we know, by Academician Galerkin at his lectures
read in 1937 for a group of his co-workers and graduate students. A precise
solution is obtained for the case of an equilateral trianglel. {554

This method is applied identically to the problem of flexure.

V. Z. Vlasov (ref. 16) applied it to the computation for rectangular plates.

To illustrate, let us examine the problem of the flexure of a weiéﬁﬁless
prism whose transverse section is a right isosceles triangle, and the force @
is applied at the center of gravity of the end section and parallel to the x
axis. The equations for the ends of the triangle are:

x+y=0, x—y=0, y=b.\
The flexure function ¢ must be determined from the equation2

o e ¢ Qu_ iy (7
el vk ke A ) )

where f(y) is an arbitrary function and the function ¢ satisfies the boundary
condition:

1

This solution is presented by Lur'ye in his "Course on the theory of elasticity"
(Kurs teorii uprugosti) (ref. 8). ’

2

Timoshenko. Course in the theory of elasticity. 191k edition, Part 1,
pp. 175-180.

12




w=(g—r10ji (4)

Let us set f(y)zQy%/(EJ). The on the lateral sides of the triangle

ng (23)-£(y)=0; on the vertical side y=b we have dy/ds=0 and, according to (8),
d¢/ds=0 eveywhere on the boundary.

On the boundary, let ¢=0.
Let us set
p=—y)e (),  So=("—y) %f{(y) 4 (9)
After substituting the wvalue f'(y) and expression (9) into (7) for P, we
multiply both parts of the equation obtained by 8¢ and integrate it with respect

to x. 1In virtue of the arbitrariness of 8¢, we finally obtain the differential
equation:

y* #”(y)+5y¢’(§)=%1:_,9}-\ (10)

The general solution to equation (10) has the form:

11 ! (11)
Y=g GGy

The arbitrary constants are determined from the conditions ¢(b)=O and the
boundedness of the function in the element of the coordinate.

Thus, we obtain:

Pl )= gy 7 6=y | (12)

1
Expression (12) is a precise solution of the problem, since it satisfies
equation (7). We will not stop at the solution of terms of the corresponding
torsion. A precise solution of the Poisson solution for the observed profile
can be taken from the work of B. G. Galerkin2 "Torsion of a trihedral prism."

A. I. TLur'ye (ref. 36) applied this method to problems of torsion. /355

1

Apparently proceeding from different calculations, Galerkin obtained the same
solution of his work "Torsion of a prism whose base is a right isosceles tri-
angle" Comptes Rendus de 1'Academie des Sciences de Paris, Vol. 180, p. 1825,
1925.
2

Izvestiya Rossiyskoy Akademii Nauk, Series 6, No. 12, pp.111-118, 1919.

13




It is especially valuable to apply the Galerkin method to questions of
the strength and stability of shells. Calculation of potential energy is a
very complicated problem in this case, so that the Galerkin method, immediately
becoming the differential equation, fully realizes its advantages.

This method has been used in the calculation of the strength of cylindrical
shells on two supports under the action of internal hydrostatic pressure. ‘

We have used the differential equation for the equilibrium of cylindrical

shells obtained by Galerkinl.

The question reduces to the integration of the partial differential equa-
tion of the eighth order whose partial derivatives have constant coefficients
of the form

BQ 8o 8o 08¢ 08e 0o 0%¢
Asw + By +Coigan D +Fxr + A+ Mygm (13)

oo purs Mo dHo __1—aq?
+N;l0—2?c'4-+14 ;Zd—FPW + QW-——EG—-paa.

This method aided Galerkin's success in obtaining a precise solution of

this problem2 .

The Galerkin method can apparently be equally successfully applied to
the problem of the stability of cylindrical shells (work in this direction is
being conducted in the Group in Structural Mechanics of the Research Institute
for Hydraulic Engineering, under the direction of Galerkin).

Lur'ye applied the Galerkin method to the problem of the stability of
shells in his course on the theory of elasticity.

T. The Galerkin method and its various modifications have found numerous
application in problems of the oscillations of elastic and invariable systems.

It is easy to see (p.6 ) that application of the Ritz method to problems
of motion starting from the Hamilton principle leads to results identical to
those of the application of the Galerkin method starting from the Lagrange
equations (refs. 32,55). Lur'ye and Chermarev (ref. 9) applied the Galerkin
method to the problem of forced vibration, where the Ritz method cannot be
applied.

1

Galerkin, B. G. The theory of elastic cylindrical shells (K teorii uprugoy
tsilindricheskoy obolochki) Doklady Akademii Nauk (DAN), 193k.

2

For another solution see B. G. Galerkin and Ya. I. Perel'man: Stresses and
displacements in cylindrical conduits (Napryazheniya i peremeshcheniya v
tsilindricheskom truboprovode). Tzvestiya Nauchno-issledovatel'skogo instituta
gidrotekhniki, No. 27.

1L |



In many of his works, Professor Duncanl uses the Galerkin method, which
he considers to be an approximate application of the Lagrange equations, to

solve many problems concerning the oscillations of elastic bodiesZ. He showed
the equivalence of the Galerkin and Rayleigh methods when one of the systems
of functions is used to determine the frequency of free oscillations. Duncan
directs particular attention to the selection of factors by which the dif-
ferential equations are multiplied, recommending pursuing the fact that the

Galerkin equations had a determined physical meaningB. 1356

The Galerkin method received further development in problems of oscilla-
tions in the works of Grammel (ref. 7). Grammel reduces the problem of finding
elgenvalues to a homogeneous integral equation which is solved essentially by
use of the Galerkin method (although Grammel goes so far as to compare his
method to the Galerkin method).

As the author shows, the Grammel method, for various systems of coordinate
functions give fewer and consequently more precise upper limits for all eigen-
values (not only for the first) than the ordinary Galerkin method. Following
Grammel, Weinel (ref. 18) gives a method for finding not only eigenvalues, but
corresponding eigenfunctions with arbitrary degrees of accuracy as well (by
use of the method of successive approximations).

A. I. Lenchenko applied the Galerkin method to the problem of the oscilla-
tions of arches (ref. 39). Ye. P. Grossman applied the Galerkin method to the
integration of equations of flutter (ref. 31). In a recently published work
(ref. 58), G. I. Petrov applied the Galerkin method to the problem of the sta-
bility of the flow of a viscous fluid, rigorously proving the solution.

Yu. D. Repman (ref. 37) has shown that application of the Galerkin method
to the problem of the stability of elastic systems with the incorrect selection
of functions (without sufficient consideration for the mechanical properties
of the functions and their derivatives) can lead to highly erroneous results
if we proceed from the differential equation

Llyl=o0. (1)

Repman shows the necessity of formal mathematical proof of the method in
its general form. At the same time, the method applied to the corresponding
1

See References.
2

Particularly, he solves the problem of the effect of the flexibility of rear
support of the surfaces on the frequency of oscillations when the body under-
goes torsion. R and M, No. 1849.
3

B. G. Galerkin also pointed this out presenting a course on his method. See
also the work of Yu. D. Repman (ref. 37).
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integral equation

can be easily proved with the arbitrary selection of a completely orthogonal
system of functions.

In the work of Hencky, the Galerkin method also found application in the
theory of plasticity (ref. 3). D. Yu. Panov applied it to several nonlinear
problems in the theory of elasticity (ref. 15).

The method of B. G. Galerkin can also be applied as the method of solving
differential and integral equations in general.

Thus, in the work of Jones and Scan (ref. 25) several examples of the
solution of differential equations according to the Galerkin method are applied
and compared with other methods (Taylor, least squares, "collocations"). The
Galerkin method shows itself to be most effective. Unfortunately, there is
absolutely no mathematical proof in the work. Error is admitted in the Duncan
proof (ref. 11) of the identicalness of the Galerkin method and the method of
least squares in the solution of ordinary differential equations when n—x.
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